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What is principal component analysis?
Markus Ringnér

Principal component analysis is often incorporated into genome-wide expression studies, but what is it and how can it be used to 
explore high-dimensional data?

Several measurement techniques used in 
the life sciences gather data for many more 

variables per sample than the typical number 
of samples assayed. For instance, DNA micro-
arrays and mass spectrometers can measure 
levels of thousands of mRNAs or proteins in 
hundreds of samples. Such high-dimensional-
ity makes visualization of samples difficult and 
limits simple exploration of the data.

Principal component analysis (PCA) is a 
mathematical algorithm that reduces the dimen-
sionality of the data while retaining most of the 
variation in the data set1. It accomplishes this 
reduction by identifying directions, called prin-
cipal components, along which the variation in 
the data is maximal. By using a few components, 
each sample can be represented by relatively few 
numbers instead of by values for thousands of 
variables. Samples can then be plotted, making it 
possible to visually assess similarities and differ-
ences between samples and determine whether 
samples can be grouped.

Saal et al.2 used microarrays to measure the 
expression of 27,648 genes in 105 breast tumor 
samples. I will use this gene expression data set, 
which is available through the Gene Expression 
Omnibus database (accession no. GSE5325), 
to illustrate how PCA can be used to represent 
samples with a smaller number of variables, 
visualize samples and genes, and detect domi-
nant patterns of gene expression. My aim with 
this example is to leave you with an idea of how 
PCA can be used to explore data sets in which 
thousands of variables have been measured.

Principal components
Although understanding the details underly-
ing PCA requires knowledge of linear alge-
bra1, the basics can be explained with simple 

geometrical interpretations of the data. To 
allow for such interpretations, imagine that 
the microarrays in our example measured the 
expression levels of only two genes, GATA3 
and XBP1. This simplifies plotting the breast 
cancer samples according to their expression 
profiles, which in this case consist of two num-
bers (Fig. 1a). Breast cancer samples are clas-
sified as being either positive or negative for 
the estrogen receptor, and I have selected two 
genes whose expression is known to correlate 
with estrogen receptor status3.

PCA identifies new variables, the principal 
components, which are linear combinations 
of the original variables. The two principal 
components for our two-dimensional gene 
expression profiles are shown in Figure 1b. It 
is easy to see that the first principal component 
is the direction along which the samples show 
the largest variation. The second principal 
component is the direction uncorrelated to the 
first component along which the samples show 
the largest variation. If data are standardized 
such that each gene is centered to zero aver-
age expression level, the principal components 
are normalized eigenvectors of the covariance 
matrix of the genes and ordered according to 
how much of the variation present in the data 
they contain. Each component can then be 
interpreted as the direction, uncorrelated to 
previous components, which maximizes the 
variance of the samples when projected onto 
the component. Here, genes were centered in 
all examples before PCA was applied to the 
data. The first component in Figure 1b can 
be expressed in terms of the original variables 
as PC1 = 0.83 × GATA3 + 0.56 × XBP1. The 
components have a sample-like pattern with 
a weight for each gene and are sometimes 
referred to as eigenarrays. Methods related to 
PCA include independent component analysis, 
which is designed to identify components that 
are statistically independent from each other, 
rather than being uncorrelated4.

Dimensional reduction and visualization
We can reduce the dimensionality of our two-
dimensional expression profiles to a single 
dimension by projecting each sample onto 
the first principal component (Fig. 1c). This 
one-dimensional representation of the data 
retains the separation of the samples accord-
ing to estrogen receptor status. The projection 
of the data onto a principal component can 
be viewed as a gene-like pattern of expression 
across samples, and the normalized pattern is 
sometimes called an eigengene. So for each 
sample-like component, PCA reveals a cor-
responding gene-like pattern containing the 
same variation in the data as the component. 
Moreover, provided that data are standardized 
so that samples have zero average expression, 
the eigengenes are eigenvectors to the covari-
ance matrix of the samples.

So far we have used data for only two genes 
to illustrate how PCA works, but what happens 
when thousands of genes are included in the 
analysis? Let’s apply PCA to the 8,534 probes 
on the microarrays with expression measure-
ments for all 105 samples. To get a view of the 
dimensionality of the data, we begin by look-
ing at the proportion of the variance present 
in all genes contained within each principal 
component (Fig. 1d). Note that although the 
first few components have more variance than 
later components, the first two components 
retain only 22% of the original variance and 
63 components are needed to retain 90% of 
the original variance. On the other hand, 104 
components are enough to retain all the origi-
nal variance—a much smaller number than 
the original 8,534 variables. When the number 
of variables is larger than the number of sam-
ples, PCA can reduce the dimensionality of the 
samples to, at most, the number of samples, 
without loss of information.

To see whether the variation retained in the 
first two components contains relevant infor-
mation about the breast cancer samples, each 
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sample is projected onto these components in 
Figure 1e. The result is that the dimensional-
ity can be reduced from the number of genes 
down to two dimensions, while still retaining 
information that separates estrogen recep-
tor–positive from estrogen receptor–negative 
samples. Estrogen receptor status is known 
to have a large influence on the gene expres-
sion profiles of breast cancer cells3. However, 
note that PCA did not generate two separate 
clusters (Fig. 1e), indicating that discover-
ing unknown groups using PCA is difficult. 
Moreover, gene expression profiles can also 
be used to classify breast cancer tumors 
according to whether they have gained DNA 
copies of ERBB2 or not3 and this informa-
tion is lost when reducing this data set to the 
first two principal components (Fig. 1f). This 
reminds us that PCA is designed to identify 
directions with the largest variation and not 
directions relevant for separating classes 
of samples. Also, it is important to bear in 
mind that much of the variation in data from 
high-throughput technologies may be due to 
systematic experimental artifacts5–7, result-
ing in dominant principal components that 
correlate with artifacts.

As the principal components have a sam-
ple-like pattern with a weight for each gene, 
we can use the weights to visualize each gene 
in the PCA plot8. Most genes will be close 
to the origin in such a biplot of genes and 
samples, whereas the genes having the larg-
est weights for the displayed components 
will extend out in their respective direc-
tions9. Biplots provide one way to use the 
correspondence between the gene-like and 
sample-like patterns revealed by PCA to 
identify groups of genes having expression 
levels characteristic for a group of samples. 
As an example, two genes with large weights 
are displayed in Figure 1e.

Applications in computational biology
An obvious application of PCA is to explore 
high-dimensional data sets, as outlined above. 
Most often, three-dimensional visualizations 
are used for such explorations, and samples 
are either projected onto the components, as 
in the examples here, or plotted according 
to their correlation with the components10. 
As much information will typically be lost 
in two- or three-dimensional visualizations, 
it is important to systematically try different 

combinations of components when visual-
izing a data set. As the principal components 
are uncorrelated, they may represent different 
aspects of the samples. This suggests that PCA 
can serve as a useful first step before clustering 
or classification of samples. However, decid-
ing how many and which components to use 
in the subsequent analysis is a major chal-
lenge that can be addressed in several ways1. 
For example, one can use components that 
correlate with a phenotype of interest9 or use 
enough components to include most of the 
variation in the data11. PCA results depend 
critically on preprocessing of the data and 
on selection of variables. Thus, inspecting 
PCA plots can potentially provide insights 
into different choices of preprocessing and 
variable selection.

PCA is often implemented using the sin-
gular value decomposition (SVD) of the 
data matrix1. The sample-like eigenarray 
and the gene-like eigengene patterns are 
both uncovered simultaneously by SVD10,12. 
Many applications beyond dimensional 
reduction, classification and clustering have 
taken advantage of global representations of 
expression profiles generated by this decom-
position. Applications include identifying 
patterns that correlate with experimental 
artifacts and filtering them out6, estimating 
missing data, associating genes and expres-
sion patterns with activities of regulators 
and helping to uncover the dynamic archi-
tecture of cellular phenotypes7,10,12. The 
rapid growth in technologies that generate 
high-dimensional molecular biology data 
will likely provide many new applications 
for PCA in the years to come.
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Figure 1  Principal component analysis (PCA) of a gene expression data set. (a) Each dot represents 
a breast cancer sample plotted against its expression levels for two genes. (In a–c, e, samples are 
colored according to estrogen receptor (ER) status: ER+, red; ER–, black). (b) PCA identifies the two 
directions (PC1 and PC2) along which the data have the largest spread. (c) Samples plotted in one 
dimension using their projections onto the first principal component (PC1) for ER+, ER– and all samples 
separately. (d) The variance of the principal components when PCA is applied to all 8,534 genes with 
expression levels for all samples. (e) PCA biplot with samples plotted in two dimensions using their 
projections onto the first two principal components, and two genes plotted using their weights for the 
components (green points). The scale shown is for the samples; for the genes, the scale should be 
divided by 950. (f) Samples plotted as in e but colored according to ERBB2 status (blue, ERBB2+; 
brown, ERBB2 –; green, unknown).
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